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LETTER TO THE EDITOR 

The writhe of a self-avoiding walk 

E Orlandinit, M C Tesit, S G Whittingtont, D W Sumners$ and 
E J Janse van Rensburgs 
t DeparIment of Chemistry, University of Tmnto, Toronto, Ontario M5S 1Al. Canada 
t Department of Mathematics, Florida State University, Tallahassee, Florida 32306-3027, USA 
5 Department of Mathematics and stltistia. Yo& University, North York. Ontario M311P3, 
Canada 

Received 8 Febmary 1993 

Abstract. The withe of a self-avoiding walk in a threedimensional space is the average over 
all projenions onto a plane of the sum of the signed crossings. We wmpute this number using a 
Monte Carlo simulation. Our resulks suggest that the average of the absolute value of the writhe 
of self-avoiding walks incleases as ma, where n is the length of the walks and 01 a 0.5. The 
mean crossing number of walks is also computed and found to have a power-law dependence 
on the length of the walks. In additioh we wnsider the e&ts of solvent q d t y  on the writhe 
and mean crossing number of walks. 

The concepts of writhing and twisting have become central to the understanding of polymer 
conformation and its effects on the physical and chemical properties of polymers. The 
degree of entanglement complexity of a polymer with itself (through knotting or writhing), 
or with neighbouring polymers (through linking), is believed to play a significant role in 
many physical and chemical proccesses involving a large number of very diverse polymers. 
These include the crystallization behaviour and rheological properties of a wide class of 
linear and closed (circular) polymers (Edwards 1967, de Gennes 1984), as well as the 
regulation of cellular processes hy DNA molecules in the living cell (Wasseman et al 
1985, Wasserman and Cozmelli 1986). The geomemy and topology of DNA molecules 
is particularly interesting and important, since both are actively manipulated by enzymes 
in order to enhance such processes as replication, transcription and recombination (see, for 
example, Bauer et al 1980 and White 1992). 

A significant amount of literature is devoted to the entanglement complexity of 
closed self-avoiding walks (or polygons) as a model of ring polymers (Vologodskii et al 
1974, Michels and Wiegel 1986, Janse van Rensburg and Whittington 1990, Koniaris 
and Muthukumar 1991, Janse van Renshurg et nl 1993). These numerical simulations 
complemented the rigorous results involving the knottedness and writhing of polygons 
(Sumners and Whittington 1988, Pippenger 1989, Janse van Rensburg et al 1993). While 
all these studies applied to models of ring polymers, there are only a few studies devoted 
to the entanglement complexity of models of linear polymers (de Gennes 1984, Janse van 
Renshurg et nl 1992, Arteca and Mezey 1992). This situation arises because there are few 
‘natural’ topological definitions of the entanglement complexity of an arc. One ‘natural‘ 
measure of the entanglement complexity of an arc is the number of crossings, averaged over 
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all projection directions (Janse van Rensburg et ai 1992, Arteca and Mezey 1992). Other 
less ‘natural‘ measures are derived from the knottedness of a curve obtained by closing the 
walk with parallel rays, or by joining the ends of the walk in a canonical way with a line 
segment (Janse van Rensburg et ai 1992). 

Writhing is an interesting geometric (as opposed to topological) measure of the 
entanglement complexity of a closed curve, and it has proved to be useful in modelling 
the degree of supercoiling.in DNA (Bauer et ai 1980, White and Bauer 1986). Duplex DNA 
can be modelled as a ribbon and there is a theorem relating the writhe of the centre line and 
the twist of the ribbon with the linking between its boundary curves (White 1969, Fuller 
1971). 

To define the writhe of a simple closed curve, or of an arc, in R3 first attach a direction 
to the curve and then consider the projection onto R2 in some direction specified by the 
unit vector 2. In general the projection will have crossings and, for almost all projection 
directions, these will be transverse so that we can assign a number +I or -1 to each 
crossing (the signed crossing number) with the sign determined by a right-hand rule, as 
shown in figure 1. For each projection, form the sum of these signed crossing numbers, 
and then average over all projection directions 2. This quantity is the writhe of the simple 
closed curve or of the arc (Fuller 1971). If we consider two disjoint simple closed curves, 
A and B, the sum of the signed crossing numbers of the crossings of curve A under curve 
B ,  ignoring crossings of A with itself or B with itself, is the finking number of the two 
curves. This quantity is independent of the projection direction. ,,---.--- I I 

Figure 1. Positive and negative crossings are F i p  2. A polygon obtained from a self-avoiding 
determined by a right-hand rule. walk by adding a lexicographic least path between the 

endpoints of the walk. 

For polygons in Z3 the calculation of writhe is greatly simplified by a theorem of Lacher 
and Sumners (1991) which states that the writhe of a polygon equals the average of the 
linking numbers of the given polygon and its pushoffs (translates through a sufficiently small 
distance) into four non-antipodal octants. See also Janse van Rensburg et ai (1993). We 
can define the writhe of a walk similarly by adding a ‘lexicographic least’ path between the 
endpoints of the walk, offset a small rational distance in a random direction (with rational 
direction cosines) to avoid self-intersections. See figure 2. One can then regard this closed 
walk as a polygon embedded in a cubic lattice which results from a subdivision of the 
original lattice. Thus, four pushoffs into non-antipodal octants can be used to compute the 
writhe of the polygon. Hence, we arrive at an alternative definition of the writhe of an open 
curve (or arc). 

Arguing as we did for polygons (Janse van Rensburg et af 1993), we expect that the 
mean of the absolute value of the writhe (Wl) of a walk, defined now as the sum of the 
signed crossing numbers averaged over all projections of the walk, will have a power-law 
dependence on the length of the walk: 

(IWl) -nu’. (1) 
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We expect that (YI  0.5, by considerations similar to those expressed in Janse van Rensburg 
er ai (1993). If we consider the altemative definition of writhe (Wz) obtained by taking 
lexicographic least closing and using the theorem of Lacher and Sumners (1991), then 
we expect power-law dependence by the following heuristic argument. The number of 
edges needed to perform the lexicographic closing of the walk is of order nu, where 
v is the metric exponent, and n the number of edges in the walk. The writhe of the 
resulting polygon is therefore expected to be proportional to (n + An")=', where a! is the 
writhe exponent of a polygon, defined in Janse van Rensburg et ai (1993). Consequently, 
(IWzl) - n"(1 + w n"(1 t ( Y A ~ - ' . ~ ) ,  where A is a constant and where we take 
v x 0.6. For large n, we therefore expect that (IWzl) will have the same power-law 
behaviour as the writhe of a polygon. Consequently, we postulate that 

where (Y w 0.5 is the exponent associated with the writhe of polygons. 
The mean over 'all possible projections of the summed unsigned crossings (we refer to 

this as the mean crossing number) is a 'natural' measure of the entanglement complexity 
of a walk (Janse van Rensburg et ai 1992, Arteca and Mezey 1992). Kesten's pattem 
theorem (Kesten 1963) implies that the mean crossing number is bounded from below by 
En, where c is a positive constant, and n is the number of edges in the walk To see this, 
we consider a pattern which consists of a tight trefoil, and which has at least one crossing 
in any projection. There are exponentially few walks which do not contain this pattern at 
least En times, for some E =- 0, so the crossing number grows at least as En. On the other 
hand, the maximum number of intersections in a projection of a walk occurs when every 
edge crosses'every other edge. That is, the projection has at most n(n - 1)/2 double points. 
Consequently, we expect that the mean crossing number will have a power-law dependence 
on n: 

where 1 < (YC < 2. 
To test equations (1)-(3), we carried out Monte Carlo simulations using the pivot 

algorithm for walks (Madras and Sokal 1987). The writhe was computed using the mean 
over all projections of the summed signed crossings to test (l), and using the lexicographic 
least closings followed by the pushoff technique to test (2). Simultaneously, we collected 
data to test (3). In figure 3 we show the writhe computed in the two ways for walks of lengths 
between 100 and 1500 edges. Least-squares fits to the data give (YI = 0.5195k0.004, in (1). 
and 01 = 0.500 f 0.005 in (2). Refitting using only the data for n between 400 and 1500, 
we obtain a1 = 0.514 =k 0.004, and (Y = 0.495 f 0.005. The error bars quoted correspond 
to two standard deviations and do not include any systematic error due to curvature, but the 
minor changes in the estimates when we include different numbers of data points suggest 
that the systematic errors are quite small. The estimates of (Y and 01 are close to each other 
and to the expected (heuristic) lower bound of 0.5. The two sets of data in figure 3 are 
displaced by a roughly constant distance in the log-log plot, with data corresponding to 
the lexicographic least-closing calculation having the higher values. This is to be expected 
since adding the edges to the walk increases its length and therefore the linking number in 
the pushoff calculation. In addition, the arguments before (2) indicate a positive correction 
when the extra edges are added. In figure 3 we also plot the mean crossing number as a 
function of n in a log-log plot. This plot shows more curvature but a linear least-squares fit 
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Figure 3. ?he lower two lines show the n- 
dependence of the logarithm of the mean of ule 
absolute value of the writhe of a W, computed 
in two ways. The upper line shows the n- 

, , , dependence of the logarithm of the mean crossing 
number. In each ease the lines are least-square 
fits of the data for n knveen 400 and 1500. 

I 

0 

4.5 S 5.5 6 6 5  1 " 
log n 

to the data for n between 400 and 1500 gives crc = 1.1221f: 0.005. The upward curvature 
suggests that this value is likely to be an underestimate. 

Self-avoiding walks can be regarded as a model of linear polymers in a good solvent. 
In order to investigate the effects of solvent quality on the writhe and crossing numbers of 
walks, we introduce a contact potential between vertices which are neighbours in a given 
conformation of the walk. The total (reduced) contact energy of a walk is determined by the 
number of neighbouring vertices (not adjacent in the walk), say m, and the contact potential 
p so that the walk has an associated weight proportional to e"'@. Increasing values of p 
are associated with decreasing solvent quality, and for f i  = 0.26 a 'collapse transition' is 
expected to occur (McCrackin et al 1973, Meirovitch 1991). 

We carried out Monte Carlo simulations to test the effects of solvent quality on the writhe 
and mean crossing number of walks. We adjusted the contact potential to several values; e@ 
took values between 0.0 (simulating a strong shop-ranged repulsion between monomers in 
the polymer), through the good solvent regime where @ = 1.0 to the approximate location 
of the collapse transition where ea % 1.3. We list the results in table 1, where the error bars 
given reflect only the statistical uncertainty and do not include any allowance for systematic 
errors. The exponent 011 seems remarkably insensitive to the value of b, and over the whole 
range studied was found to be close to 0.52. In all these simulations the writhe of a walk 
was computed by the sum over the signed crossings, rather than the pushoff method. On the 
other hand, the crossing exponent cuc is insensitive to fi  in the repulsive and good solvent 
regimes, but it increases as we approach the collapse transition. 

While the exponent 01, is insensitive to p, the mean of the absolute writhe of a walk 
is dependent on 6. We examine this dependence in figure 4, where we plot the mean 
absolute writhe of walks against the contact potential. We note a steady increase with 
increasing f i .  Since larger values of 6 assign larger weights to walks with many contacts, 
these conformations are more compact and therefore have larger writhe than conformations 
with low contact numbers. The crossing number has a similar dependence on ,3 (figure 5). 
Conformations with larger contact numbers have larger crossing numbers. 

In summary, the writhe of a walk can be defined in two alternative ways which give 
numerically consistent results. We take the fact that 01 = 01, in (1) and (2) to mean that 
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writhe can be considered an intrinsic property of a walk which can be measured in either 
of the ways suggested in this letter. This is because the number of edges which are needed 
to convert a walk into a polygon is proportional to no.6, which becomes small compared to 
n in the large n limit; and the geometric properties of a 'long' walk will look much like 
those of a polygon in this limit. 
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